National Technical Reports Library - NTRL

National Technical Reports Library

The National Technical Information Service acquires, indexes, abstracts, and archives the largest collection of U.S. government-sponsored technical reports in existence. The NTRL offers online, free and open access to these authenticated government technical reports. Technical reports and documents in its repository may be available online for free either from the issuing federal agency, the U.S. Government Publishing Office’s Federal Digital System website, or through search engines.




Details
Actions:
Download PDFDownload PDF
Download

Definition of a Twelve-Point Polygonal SAA Boundry for the GLAST Mission.


DE2007915382

Publication Date 2007
Personal Author Djomehri, S. I.
Page Count 23
Abstract The Gamma-Ray Large Area Space Telescope (GLAST), set to launch in early 2008, detects gamma rays within a huge energy range of 100 MeV--300 GeV. Background cosmic radiation interferes with such detection resulting in confusion over distinguishing cosmic from gamma rays encountered. This quandary is resolved by encasing GLAST's Large Area Telescope (LAT) with an Anti-Coincidence Detector (ACD), a device which identifies and vetoes charged particles. The ACD accomplishes this through plastic scintillator tiles; when cosmic rays strike, photons produced induce currents in Photomulitplier Tubes (PMTs) attached to these tiles. However, as GLAST orbits Earth at altitudes approx. 550km and latitudes between -26 degrees and 26 degrees, it will confront the South Atlantic Anomaly (SAA), a region of high particle flux caused by trapped radiation in the geomagnetic field. Since the SAA flux would degrade the sensitivity of the ACD's PMTs over time, a determined boundary enclosing this region need be attained, signaling when to lower the voltage on the PMTs as a protective measure. The operational constraints on such a boundary require a convex SAA polygon with twelve edges, whose area is minimal ensuring GLAST has maximum observation time. The AP8 and PSB97 models describing the behavior of trapped radiation were used in analyzing the SAA and defining a convex SAA boundary of twelve sides. The smallest possible boundary was found to cover 14.58% of GLAST's observation time.
Keywords
  • Astrophysics
  • Gamma rays
  • Telescopes
  • Polygons
  • Charged particles
  • Gamma detection
  • Energy range
  • Radiation detectors
  • Photons
  • Scintillation counters
Source Agency
  • Technical Information Center Oak Ridge Tennessee
Corporate Authors Stanford Linear Accelerator Center, CA.; California Univ., Santa Cruz.; Department of Energy, Washington, DC.
Supplemental Notes Prepared in cooperation with California Univ., Santa Cruz. Sponsored by Department of Energy, Washington, DC.
Document Type Technical Report
NTIS Issue Number 200805
Contract Number
  • DE-AC02-76SF00515
Definition of a Twelve-Point Polygonal SAA Boundry for the GLAST Mission.
Definition of a Twelve-Point Polygonal SAA Boundry for the GLAST Mission.
DE2007915382

  • Astrophysics
  • Gamma rays
  • Telescopes
  • Polygons
  • Charged particles
  • Gamma detection
  • Energy range
  • Radiation detectors
  • Photons
  • Scintillation counters
  • Technical Information Center Oak Ridge Tennessee
  • DE-AC02-76SF00515
Loading