National Technical Reports Library - NTRL

National Technical Reports Library

The National Technical Information Service acquires, indexes, abstracts, and archives the largest collection of U.S. government-sponsored technical reports in existence. The NTRL offers online, free and open access to these authenticated government technical reports. Technical reports and documents in its repository may be available online for free either from the issuing federal agency, the U.S. Government Publishing Office’s Federal Digital System website, or through search engines.




Details
Actions:
Download PDFDownload PDF
Download

Improving Ground Penetration Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization.


DE2005850393

Publication Date 2005
Personal Author Wright, D. L.
Page Count 8
Abstract The Department of Energy has identified the location and characterization of subsurface contaminants and the characterization of the subsurface as a priority need. Many DOE facilities are in need of subsurface imaging in the vadose and saturated zones. This includes (1) the detection and characterization of metal and concrete structures, (2) the characterization of waste pits (for both contents and integrity) and (3) mapping the complex geological/hydrological framework of the vadose and saturated zones. The DOE has identified ground penetrating radar (GPR) as a method that can non-invasively map transportation pathways and vadose zone heterogeneity. An advanced GPR system and advanced subsurface modeling, processing, imaging, and inversion techniques can be directly applied to several DOE science needs in more than one focus area and at many sites. Needs for enhanced subsurface imaging have been identified at Hanford, INEEL, SRS, ORNL, LLNL, SNL, LANL, and many other sites. In fact, needs for better subsurface imaging probably exist at all DOE sites. However, GPR performance is often inadequate due to increased attenuation and dispersion when soil conductivities are high. Our objective is to extend the limits of performance of GPR by improvements to both hardware and numerical computation. The key features include (1) greater dynamic range through real time digitizing, receiver gain improvements, and high output pulser, (2) recording the direct arrival at the receiving antenna, supplemented with additional sensors if necessary, to allow dynamic determination of the radiated waveform, (3) modified deconvolution and depth migration algorithms exploiting the new antenna output information, (4) increased ability to perform automatic full waveform inversion made possible by the known radiated pulse shape.
Keywords
  • Ground penetrating radar
  • Imaging
  • Site characterization
  • Contaminants
  • Vadose zone
  • Subsurface
Source Agency
  • Technical Information Center Oak Ridge Tennessee
Corporate Authors Geological Survey, Washington, DC.; Department of Energy, Washington, DC.
Supplemental Notes Sponsored by Department of Energy, Washington, DC.
Document Type Technical Report
NTIS Issue Number 200610
Improving Ground Penetration Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization.
Improving Ground Penetration Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization.
DE2005850393

  • Ground penetrating radar
  • Imaging
  • Site characterization
  • Contaminants
  • Vadose zone
  • Subsurface
  • Technical Information Center Oak Ridge Tennessee
Loading