National Technical Reports Library - NTRL

National Technical Reports Library

The National Technical Information Service acquires, indexes, abstracts, and archives the largest collection of U.S. government-sponsored technical reports in existence. The NTRL offers online, free and open access to these authenticated government technical reports. Technical reports and documents in its repository may be available online for free either from the issuing federal agency, the U.S. Government Publishing Office’s Federal Digital System website, or through search engines.




Details
Actions:
Download PDFDownload XML
Download

Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Liar/Radar Profoiles at SIRTA Atmospheric Observatory.


DE2005841492

Publication Date 2005
Personal Author Chiriaco, M.; Vautard, R.; Chepter, H.; Haeffelin, M.
Page Count 16
Abstract Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized inatmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta. lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the model to observations approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.
Keywords
  • Clouds
  • Remote sensing
  • Albedo
  • Greenhouse effect
  • Climates
  • Earth atmosphere
  • Ecosystems
  • Optical radar
  • Energy balance
  • Radiations
  • Ice clouds
Source Agency
  • Technical Information Center Oak Ridge Tennessee
Corporate Authors Laboratoire de Meteorologie Dynamique, Palaiseu, (France).; National Center for Atmospheric Research, Boulder, CO.; Department of Energy, Washington, DC.
Supplemental Notes Prepared in cooperation with National Center for Atmospheric Research, Boulder, CO. Sponsored by Department of Energy, Washington, DC.
Document Type Technical Report
NTIS Issue Number 200614
Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Liar/Radar Profoiles at SIRTA Atmospheric Observatory.
Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Liar/Radar Profoiles at SIRTA Atmospheric Observatory.
DE2005841492

  • Clouds
  • Remote sensing
  • Albedo
  • Greenhouse effect
  • Climates
  • Earth atmosphere
  • Ecosystems
  • Optical radar
  • Energy balance
  • Radiations
  • Ice clouds
  • Technical Information Center Oak Ridge Tennessee
Loading