Publication Date |
2004 |
Personal Author |
Rudakov, D. L.; Boedo, J. A.; Moyer, R. A.; Brooks, N. H.; Doerner, R. P.; Evans, T. E.; Fenstermacher, M. E. |
Page Count |
22 |
Abstract |
Far scrape-off layer (SOL) plasma parameters in DIII-D depend strongly on the discharge density and confinement regime. In L-mode, cross-field transport increases with the average discharge density and elevates the far SOL density, thus increasing plasma-wall contact. Far SOL density near the low field side (LFS) of the main chamber wall also increases with decreasing plasma current and with decreasing outer wall gap. In H-mode, between edge localized modes (ELMs), plasma-wall contact is weaker than in L-mode. During ELMs, plasma fluxes to the LFS wall increase to, or above the L-mode levels. A large fraction of the net cross-field fluxes is convected through the SOL by large amplitude intermittent transport events. In high density L-mode and during ELMs in H-mode, intermittent events propagate all the way to the LFS wall and may cause sputtering. |
Keywords |
|
Source Agency |
|
Corporate Authors |
Lawrence Livermore National Lab., CA.; Department of Energy, Washington, DC. |
Supplemental Notes |
Sponsored by Department of Energy, Washington, DC. |
Document Type |
Technical Report |
NTIS Issue Number |
200602 |