National Technical Reports Library - NTRL

National Technical Reports Library

The National Technical Information Service acquires, indexes, abstracts, and archives the largest collection of U.S. government-sponsored technical reports in existence. The NTRL offers online, free and open access to these authenticated government technical reports. Technical reports and documents in its repository may be available online for free either from the issuing federal agency, the U.S. Government Publishing Office’s Federal Digital System website, or through search engines.




Details
Actions:
Download PDFDownload XML
Download

Comparison of Measured and Calculated Gamma Ray Attenuation for a Common Counting Geometry.


DE200415009802

Publication Date 2004
Personal Author Gaylord, R. F.
Page Count 12
Abstract In order to perform quantitative gamma spectroscopy, it is necessary to know the sample-specific detection efficiency for photons as a function of energy. The detection efficiency, along with the branching ratio for the isotope and gamma ray of interest, is used to convert observed counts/second to actual disintegrations/second, and, hence, has a large effect on the accuracy of the measurement. In cases where the geometry of the source is simple and reproducible, such as a point source, small vial of solid, or jar of liquid, geometry-specific standards may be counted to determine the detection efficiency. In cases where the samples are large, irregular, or unique, this method generally cannot be used. For example, it is impossible to obtain a NIST-traceable standard glovebox or 55-gallon drum. In these cases, a combination of measured absolute detector efficiency and calculated sample-specific correction factors is commonly used. The correction factors may be calculated via Monte Carlo simulation of the item (the method used by Canberra's ISOCS system), or via semi-empirical calculation of matrix and container attenuations based on the thickness and composition of the container and radioactive matrix (ISOTOPIC by EG&G Ortec uses this method). The accuracy of these correction factors for specific geometries is often of vital interest when assessing the quality of gamma spectroscopy data. During the Building 251 Risk-Reduction Project, over 100 samples of high activity actinides will be characterized via gamma spectroscopy, typically without removing the material from the current storage containers. Most of the radioactive materials in B-251 are stored in cylindrical stainless steel canisters (called USV containers, after the Underground Storage Vaults they are commonly stored in), 13 cm in diameter, by 28 cm high, with walls that are 1.8 mm thick. While the actual samples have a variety of configurations inside the USV container, a very common configuration is the material (usually as an oxide powder pellet of approximately 2 cm diameter by (approx)2 mm thick) in a squat glass jar, with the jar placed in a thin steel food-pack can, which is then placed in the bottom of the USV canister. During data acquisition, the USV containers are typically rotated at approximately 4 rpm on a turntable to eliminate errors due to the material not being centered in the can, or attenuation not being isotropic. An aluminum plate is placed over the container, secured by three vertical rods, to securely hold the container.
Keywords
  • Attenuation
  • Gamma spectroscopy
  • Containers
  • Geometry
  • Radioactive materials
  • Gamma rays
  • Underground storage
  • Monte Carlo method
  • ISOTOPIC matrix and geometry correction code
Source Agency
  • Technical Information Center Oak Ridge Tennessee
Corporate Authors Lawrence Livermore National Lab., CA.; Department of Energy, Washington, DC.
Supplemental Notes Sponsored by Department of Energy, Washington, DC.
Document Type Technical Report
NTIS Issue Number 200513
Comparison of Measured and Calculated Gamma Ray Attenuation for a Common Counting Geometry.
Comparison of Measured and Calculated Gamma Ray Attenuation for a Common Counting Geometry.
DE200415009802

  • Attenuation
  • Gamma spectroscopy
  • Containers
  • Geometry
  • Radioactive materials
  • Gamma rays
  • Underground storage
  • Monte Carlo method
  • ISOTOPIC matrix and geometry correction code
  • Technical Information Center Oak Ridge Tennessee
Loading